
KAMI: Kitchen Assistant and Meal
Innovator

By: Noah Addie, Stephen Shuecraft, and Zhen Ze Ong

SCIS-4923 Senior Project

Dr. Ahmad Al Shami

2

Table of Contents

Table of Contents...2
Abstract.. 4
1. Introduction..5

1.1 Context and Motivation.. 5
1.2 Problem Statement.. 5
1.3 Project Objectives..6
1.4 Project Scope.. 7

1.4.1 Main Objectives.. 7
1.4.2 Requirements..7
1.4.3 Constraints..7

1.5 Stakeholders..8
1.6 Report Structure.. 9

2. Domain-Related Concepts and Systems...10
2.1 Introduction.. 10
2.2 Adopted Methodology..10
2.3 Research..11

2.3.1 Resulting Diagrams...12
2.4 Project Feasibility...17

2.4.1 Technical Feasibility..17
2.4.2 Operational Feasibility.. 17
2.4.3 Schedule Feasibility..18
2.4.4 Economic Feasibility... 18

2.5 Risk Management..18
2.6 Requirements.. 19
2.7 Conclusion... 19

3. Computing-based Solution/System Analysis... 20
3.1 Introduction.. 20
3.2 Domain Requirements... 20

3.2.1 Inputs.. 20
3.2.2 Outputs... 21
3.2.3 Processes... 21
3.2.4 Performance... 22
3.2.5 Controls...22
3.2.6 Scalability..22

3.3 Functional Requirements...23
3.4 Non-Functional Requirements... 23
3.5 Conclusion... 24

4. Computing-Based Solution/System Design, Implementation, and Testing..................... 25

3

4.1 Introduction.. 25
4.2 Programming Environment.. 25

4.2.1 Visual Studio... 25
4.2.2 PyCharm...25
4.2.3 XAMPP MySQL.. 26

4.3 Tools and APIs...26
4.3.1 OpenAI GPT-4 API..26
4.3.2 OpenAI’s DALL-E 3 API..27
4.3.3 HTML, CSS, and JavaScript...27
4.3.4 Django...29
4.3.5 Dependency Downloads...29

4.4 Testing Techniques.. 29
4.6 Implementation and Testing...33
4.7 Conclusion... 34

5. Conclusion... 35
5.1 Summary... 35
5.2 Reflections... 35
5.3 Future Development.. 36

References... 38
Acronyms... 41
List of Figures..42

4

Abstract
This project aims to revolutionize home cooking by providing personalized recipes and

cooking suggestions, thus reducing food waste in the kitchen. The project introduces KAMI, a

kitchen assistant that leverages AI to generate recipes based on available ingredients. Users have

the flexibility to customize these recipes according to their preferences, budget constraints, and

dietary requirements. Additionally, KAMI allows users to manage their ingredient inventory,

save generated recipes, and interact seamlessly through a user-friendly website interface.

Emphasizing simplicity and user-friendliness, KAMI assists users in inputting ingredients and

learning new recipes effortlessly. This report encompasses the project's mission, goals, strategies

to accomplish them, research findings, and the final prototype of the KAMI system.

5

1. Introduction

1.1 Context and Motivation

We designed this project to answer two questions: Can AI help create proper dishes for

someone with only certain available ingredients? Furthermore, can it adapt these dishes to the

user’s dietary restrictions and choice of cuisine? We are setting out to make an AI-based recipe

generator that functions by feeding its available ingredients and establishing limits or constraints

to the dish. We want to integrate this into a website that generates these recipes, considers dietary

needs, generates dishes from different cultures, and stores an inventory of the ingredients in the

user's kitchen. This project aims to significantly improve the at-home kitchen experience and

reduce food waste in households everywhere.

1.2 Problem Statement

In a rapidly changing culinary landscape, individuals face challenges in planning and

preparing meals that align with their dietary preferences, time constraints, and available

ingredients. Traditional recipe generators cannot provide personalized, creative, and new recipes.

This project aims to stand out by using AI to leverage state-of-the-art natural language

processing and machine learning techniques to recommend, generate, and enhance culinary

experiences. The system considers user preferences, dietary restrictions, ingredient availability,

and cultural influences when generating recipes. AI is the solution to personalization as it can

quickly adapt its output based on the scenario without extra work from the user or the system. It

could inspire culinary innovation while promoting home cooking and reducing food waste.

6

1.3 Project Objectives

According to the U.S. Department of Agriculture (USDA), only 60% of women and 33%

of men do food preparation at home on an average day (Zeballos, 2020). The project hopes to

incentivize more of the population to cook at home, as home cooking can result in healthier and

cheaper meals. People with dietary needs can also benefit from preparing their meals. “...the best

part about cooking at home is controlling the ingredients so you know exactly what you're

eating” (Wicks, 2022).

The main goal of this project is to provide a possible recipe regardless of the available

ingredients while accommodating changes in dietary restrictions, type of cuisine, and ingredient

supplemental options. We can achieve this goal by implementing an AI API, database, and user

interface. These components work together to form a convenient and personalized system for

each user.

Eventually, we plan to create a website to house all the functions we want incorporated

with our AI kitchen assistant. We came up with the name for the project, KAMI, which stands

for Kitchen Assistant and Meal Innovator. We aim to have the prototype functional by the end of

the year, merging an AI API, database, and user interface using Python code. KAMI can make a

recipe from the available ingredients or have it randomized from a master list of known

ingredients. It will also have an inventory for a user’s ingredients, a way to put in criteria (dietary

needs and cuisine preferences), and a user account feature to save personal preferences and data.

If we complete the project earlier than expected, we have numerous next steps that we could

take, such as adding a budget API to estimate the cost of the meal, a chatbot capable of general

cooking help, and allowing users to save recipes and make digital cookbooks from them.

7

1.4 Project Scope

1.4.1 Main Objectives

We intend for KAMI to work in home kitchens of all levels, shapes, and sizes. It should

also benefit beginner and expert cooks by reducing waste and teaching them new recipes. To fit

our limits of resources and time, this is our list of priority objectives:

● Implement a way to generate recipes by calling multiple APIs for different functions

● Create a database to implement with the app and the user account.

● Create user accounts that store recipes, allergies, preferences, and inventory.

● Create a website to house and act as a man-in-the-middle to the AI and database,

allowing for easy and quick inputs for recipe creation and general kitchen help.

1.4.2 Requirements

The project requires users to access KAMI on a website through a browser. We plan to

take advantage of the flexibility of a website as it allows access to it on both mobile and desktop

devices. This option would allow users to be flexible on what kind of device they prefer to use.

The device must have a connection to the internet to access the website, along with the database

and AI API. The user does not need to create an account or have actual ingredients to use the

kitchen assistant.

1.4.3 Constraints

We only designed KAMI to be a digital assistant in the kitchen. It cannot physically help

or guide a user with cooking. Although the recipe contains detailed instructions, the user must

understand the culinary and kitchen tools they are using. KAMI does not purchase or physically

manage ingredients for the user. The user will still have to purchase ingredients and determine

their meal budget. The user must also understand the limitations of the KAMI and ensure that the

8

inputted information is correct. AI is not perfect and can make mistakes, which must be taken

into account by the user.

It may also be impossible for the AI to generate a recipe with certain ingredients. For

example, if a user inputs salt and pepper as their only ingredients, the AI has no choice but to

deny their request. The AI is not required to use every ingredient the user has unless specified

otherwise. The recipe may turn out differently than intended, especially if the user puts the AI

under unreasonable conditions.

KAMI will not track the user's data for marketing or advertising purposes. Users can save

their ingredients, allergies, or cuisine choices to make it more convenient, but they will not be

shared or used outside their intended purpose.

1.5 Stakeholders

This project targets beginner and expert home cooks alike. We aim to develop KAMI to

reduce the waste of food, time, and money needed to prepare meals. It is also a guide for aspiring

cooks who may have few ingredients to work with or are inexperienced in the kitchen. The

recipes generated by the AI must be detailed in every step so that the user gets all crucial

information during the process.

Food businesses are also dealing with the problem of food waste. An online article states,

“...around 40% of all food is wasted—with 66 billion pounds consisting of commercial leftover

food waste” (Mettler, 2023). If we wanted to branch out our audience to locally owned or

franchise restaurants, we could add features to help create daily menu schedules based on

ingredient inventory, implement inventory access to distributors for seamless inventory updates,

and add methods for finding more cost-effective recipes.

9

1.6 Report Structure

We compiled this report to document every stage of the project’s timeline, providing a

detailed account of its inception and conclusion. This comprehensive documentation is designed

to assist in replicating or deriving insights for similar product development. It serves as a

chronological guide and a deep dive into the intricacies of the project’s system, elucidating our

methodologies, challenges faced, and strategic decisions made along the way. We have included

detailed descriptions of our results and findings, highlighting the advantages and disadvantages

encountered throughout the project. Additionally, this report outlines potential future directions

and next steps, offering recommendations based on our experiences and the outcomes achieved.

This should empower readers with the knowledge and tools necessary to undertake a similar

endeavor or to build upon the foundation we established.

10

2. Domain-Related Concepts and Systems

2.1 Introduction

This project aims to help decrease food waste and increase home cooking in households

worldwide. We considered different variations of research, development, and analysis methods to

determine the best practices for this project. This section will discuss the project's requirements,

risk management, and feasibility.

2.2 Adopted Methodology

Every successful project requires a well-planned methodology. No single methodology is

the best, as each may be more effective in different scenarios. For this project, we adopted Agile

Methodology, which is particularly suited to environments requiring flexibility and iterative

progress. Given that each team member would be working on different components of the

project, Agile’s iterative and incremental approach allowed us to adapt and evolve our project

dynamically. “Teams that adopt the Agile methodology are able to complete work faster, adapt to

changing project requirements, and optimize their workflow” (Agile Methodology: Project

Management, 2022). This model supports frequent reassessment and adaptation, which is crucial

in responding to changing project requirements and stakeholder input effectively.

As depicted in the updated Gantt chart (Figure 1), our project comprises the AI API,

database, and user interface. Each team member focuses on one main component but is also

engaged in regular sprint reviews and retrospectives to ensure integration and coherence across

the components. We further break these components down into smaller, manageable tasks,

allowing us to address issues and refine the product incrementally. Unlike the Waterfall model,

Agile does not require the completion of one phase to begin another, facilitating a more fluid and

11

overlapping project development. This flexibility ensures that the project adapts to new insights

and changes in requirements without significant setbacks. The dynamic nature of Agile fits well

with the project’s evolving needs, enabling a more collaborative and adaptable development

environment. Through the implementation of Agile practices, we aim to ensure that our research

and development processes remain responsive and efficient throughout the project's lifecycle.

Figure 1

Gantt Chart of the Project

2.3 Research

Websites are very accessible at this age, and we plan to create one that can improve the

quality of life of both beginner and expert home cooks. We initially wanted to develop an AI

specializing in generating recipes based on cooking websites and videos. After a quick online

search, we discovered many other recipe-generating AIs, such as ChefGPT and DishGen, existed

on the market. To succeed in a capstone project, we needed to build a better AI or have our

project do something the others did not. Since experts fully developed these AIs, they will likely

outperform any AI we can create. We decided to create KAMI, which implements an AI API

instead.

12

The original idea was to have the kitchen assistant as a mobile application. However,

after extensive research and work, connecting many APIs to an application became too

complicated and would take many extra steps. The project shifted towards hosting the kitchen

assistant on a website instead. Having the prototype on a website would provide more

advantages and fewer disadvantages than a mobile application.

Inputting the same ingredients for every use would be too troublesome for a consumer, so

a database was needed to store the user’s inventory. Dietary needs would also be considered, as

users might have allergies or observe a particular diet for health or religious reasons. KAMI

should output a recipe with detailed steps that a beginner cook can understand while not being

too trivial for an expert cook. We aim to use it to elevate a user’s cooking experience in their

kitchen. After extensive research, we decided to use OpenAI’s ChatGPT API for the AI, MySQL

for the database, and an HTML website for the user interface.

2.3.1 Resulting Diagrams

This project used the following diagrams to represent different components of the system.

The use case diagram illustrates the high-level functions of the project, representing the

interactions between actors and the system. ER diagrams represent the structure of the database,

showing the relationships between tables and values.

13

Figure 2

Use Case Diagram of the System

The use case diagram above (Figure 2) represents the high-level functions of our system.

It summarizes the interactions of the actors (users and admins) with our system, like logging into

or creating an account and inputting or removing ingredients in their inventory. Users will have

access to specific interactions but not others, indicated by the lines drawn to each interaction.

Admins have backend access to the interface, API, and database, also shown by the drawn lines.

We can further break down each user case, as shown below for the “Log into or create account”

use case.

14

Figure 3

Use Case Description for Logging into or Creating a User Account

15

Figure 4

Early ER Diagram Prototype of the Database

We designed an early version of the database using this ER (Entity Relationship) diagram

(Figure 4). It represents what attributes each entity has, as well as the relationships between the

entities. Relationships can be one-to-one, one-to-many, many-to-many, or optional, depending on

the requirements. Each entity has at least one key attribute used to identify the entity. We also

assign unique IDs to each entity that cannot be modified unless we remove the entire entity from

the database.

16

Figure 5

Final 3NF ER Diagram of the Database

Figure 5 illustrates the relationships between the tables. The colored links show which

columns were connected. For example, with the ID from “user_info,” the IngredientID of

“ingredient_in_recipe” can be accessed through multiple links. On KAMI, this will allow the

user to view the ingredients in the recipes they had previously generated and saved. The Key

icon represents each table’s key attributes. The diagram also includes the data type and size of

each value in the table. We used 5-letter strings like “F0001” and “U0001” as unique IDs. Doing

so prevented any confusion in tables containing multiple unique IDs.

17

2.4 Project Feasibility

2.4.1 Technical Feasibility

The system is composed of the AI API, database, user interface, and user accounts. The

problem with the user interface is easily solvable; it will house all the functions in the website

using a web framework. We chose Django as this project’s web framework for different reasons,

but we will go further into that later, as the AI and database are the priority. The website uses

HTML, which can be easily imported into the web framework. Lastly, other AI tools, such as

image generation, can further personalize the recipes that the users generate. These components

must work together to provide a good user experience with a developed A.I. kitchen assistant.

The user requires a functional device with a stable Wi-Fi connection. The best solution

for ensuring the device is functional and has a Wi-Fi connection is to host the KAMI on a

website. Only when a user has a device such as a smartphone, tablet, or laptop with a connection

to the internet can they access a website. Adding new criteria or changing information like

available ingredients or cuisine can also be easily updated through an exemplary user interface.

2.4.2 Operational Feasibility

This project will use existing AI and database structures, OpenAI’s ChatGPT and

MySQL, respectively. We chose these products because they are popular in the market, easy to

implement, and have heavy documentation. This choice allows us to focus on the system of the

project rather than “reinventing the wheel” by creating a new AI or database structure. Popular

products also ensure high performance and reliability, but a common downside is extra cost for

the project. Using HTML for the website is also efficient, as many templates and tutorials are

available to the public. The user accounts will also be easy to implement because most web

18

frameworks have that built into their system. Python will be the primary programming language

as it contains many libraries that connect the OpenAI ChatGPT and MySQL APIs to the system.

2.4.3 Schedule Feasibility

We researched and brainstormed project ideas during the first two weeks. Then, we

researched our steps for the next two weeks to ensure every project step was feasible. After that,

it was a cycle of learning and using all the models chosen to complete a prototype within the

timeframe. The project code and presentation were due a week before the end of the semester.

2.4.4 Economic Feasibility

The only main cost of the current project prototype is $10 to test and run the OpenAI

APIs. The APIs are charged according to tokens, where 1000 tokens are about 750 words.

Different OpenAI AI models have different token rates. This project uses the following models:

Model Input Output

GPT-4 $0.03 / 1K tokens $0.06 / 1K tokens

Model Quality Resolution Price

DALL·E 3 Standard 1024×1024 $0.040 / image

The APIs are reasonably priced and only cost a few cents after multiple queries, so $10

should be sufficient for prototype testing for both semesters. The web framework has no or

negligible cost. Other APIs like MySQL and webpage development also have no cost.

2.5 Risk Management

While there would not be much personal or identifiable information tied to each user’s

account, it would still be in our best interest to ensure the privacy and security of the user’s data.

Any data collected from an individual must not be used as a marketing tool. These include the

19

ingredients and dietary habits of the user. The data and communication between the user and

KAMI must be private and secure.

Should the user enter unneeded personal data, the system should not store it in any shape

or form. The database should have a proper system and be regulated often to minimize

unintended data sharing. As the APIs used in the project are external sources, it must be in our

best interest to ensure that those sources do not collect a user’s data without their consent. In the

current state of this project, it does not share information with any third-party organizations. The

system should inform users about third-party changes and allow them to decline those services.

2.6 Requirements

Most of the requirements for this project are self-evident. The user must have a device

and a list of available ingredients and preferences to input into the website. The device will

require an internet connection. The user will have to determine if the recipe properly considers

allergies and other food issues, update their inventory, and provide their data for input. Users

who intend to remove or edit their data in the system should be allowed to do so.

2.7 Conclusion

In conclusion, our project follows an Agile model as its methodology. After extensive

research, we shifted the project’s focus from creating an AI to integrating existing APIs into

KAMI, a digital kitchen assistant. The use case and entity relationship diagrams illustrate the

system's functionalities. Before starting the project's development, we addressed the technical,

operational, schedule, and economic feasibilities. We considered privacy and security measures

to mitigate potential risks. The system requires user input and discretion to function as intended.

The project aims to offer a user-friendly and personalized kitchen assistant, contributing to a

more enjoyable cooking experience.

20

3. Computing-based Solution/System Analysis

3.1 Introduction

To determine the effectiveness of the envisioned project system, the domain, functional,

and non-functional requirements had to be accessed appropriately. All these requirements are

vital to the final product's success and can lead to complications if unchecked.

3.2 Domain Requirements

We decided to operate KAMI on a website accessed through a browser. The website

should be compatible with mobile and desktop devices with similar functionality. A user should

be able to access their data across multiple devices. The device must have a connection to the

internet. This section also discusses other domain requirements: inputs, outputs, processes,

performance, controls, and scalability.

3.2.1 Inputs

The inputs for this project are the available ingredients and preferences (allergies and

diets) for each individual and the individual’s choice of cuisine for the recipe. All inputs are sent

to the AI API to determine what recipes it can generate. The user can also select a “go wild”

option, which sends a list of roughly 130 commonly known ingredients to the AI API. The AI

can use any combination of ingredients from that list to generate a recipe while considering the

user’s preferences and cuisine. Users may also input what ingredients they want to be added or

removed from their inventory. Inputs can be saved to user accounts, allowing users to save their

inventory and preferences to generate future recipes.

21

3.2.2 Outputs

The main output of the system is the recipe. The generated recipe contains the ingredients

from the user’s inventory, the necessary cooking steps, and additional notes like warnings and

substitute ingredient options. Another output is an AI-generated image of the envisioned meal.

Similar to the inputs, generated recipes and images can also be saved by users to their accounts.

3.2.3 Processes

Inputs can be taken directly from the database and the user. The system formats these

inputs into a string and sends them to the AI API as a query. String manipulation is vital for the

whole system to work. The query should prompt the AI to return an output that follows a

consistent format. A consistently formatted output will allow the system to send the needed

information to the website to display the output expectedly. The system has an error-checking

process to ensure an expected AI output. If the output is not formatted correctly, it may cause the

website to display the results incorrectly. This error is especially evident in the AI image

generation. As the image generator should only receive the recipe's title, receiving any other part

of the recipe, such as raw ingredients or warnings, could result in a completely unexpected

image.

The recipe output from the AI is returned as one string and must be separated (or sliced)

into portions before the system can use it. A section of the code slices it into a list of strings: the

title, ingredients, and recipe steps. As mentioned above, the recipe's title is sent to the AI image

generator to return an image. The recipe and generated image are returned to the system and sent

to the website where users can access them. The system then stores the title, ingredients, and

cooking steps to their respective tables in the database.

22

3.2.4 Performance

Since the project is composed of several APIs, the overall performance strongly depends

on each API's speed. API calls to the database are nearly instant. The API generates the text

output using “autoregression.” It generates the first word, predicts the next word, and then the

next. It repeats the process until it completes the whole recipe. The website should display the

text as it is generated and should start within an estimated 5 seconds. Popular AI chatbots like

ChatGPT and Google Bard return outputs in a similar fashion.

3.2.5 Controls

The user should be given adequate control over the website so that it can still function

properly when errors or mistakes occur. The option to regenerate a similar recipe or add an

unknown ingredient should be available for the user. The unknown ingredient may be foreign to

the initial database because it is rare or culturally exclusive. Examples could be oyster sauce or

miso, which do not exist in the initial database due to their exclusivity to Asian meals. However,

the user should be able to input them as text manually, and the AI should be able to use the

ingredient in the recipe as long as there is information about it on the internet. The initial

database gives the AI a list of common ingredients for the random recipe generation.

3.2.6 Scalability

In the future, many new functions could be added to the website. We considered several

future functions that could improve the system:

● A budgeting system that considers ingredient prices

● Inventory management regarding ingredient expiration dates

● Image detection for easy input of ingredients

● Business accounts with functions tailored toward restaurants and food stalls

23

If more users begin using the website, both the database and the AI may need to be

upgraded to handle the increased demand. The database may require cloud storage services, and

the AI may require an upgrade to make more simultaneous input and output calls to keep up with

the increased demand. These upgrades will increase the cost of running the project.

Turning the website into an application for iOS and Android devices is also a possible

addition to this project in the future. Having it as an application may encourage its popularity and

marketability. Users should be able to use their accounts interchangeably between the website

and application versions. An offline version was considered but may not be possible, as although

the user can download a personal database to the device, the AI will still need an internet

connection to function.

3.3 Functional Requirements

Several things are required for the whole system to function correctly. The user’s browser

should be able to run the website as intended, and it must establish a connection to the database

and the AI to begin any process. These will all require a stable internet connection. The queries

sent to and from the AI must be formatted correctly. Otherwise, the results might be inaccurate.

3.4 Non-Functional Requirements

The need to save inventory, preferences, and recipes is an extended functionality that is

not required. The user is not required to create an account for the system to function. Image

generation is also a non-functional requirement, only providing the user with an idea of how the

recipe might turn out without any other benefit.

Other features may be added to the system to improve reliability and efficiency. We

considered examples such as image detection through a camera or receipt scanning to

automatically input detected ingredients. Another would be a page on the website where users

24

can share and rate each other’s generated recipes. Kitchen tools like timers could be built into the

website as well. However, these ideas are not required and thus not prioritized. So, it was

decided not to include them in the project's current timeline.

3.5 Conclusion

In conclusion, a successful project requires proper planning for its requirements. The

project took detailed consideration of domain, functional, and non-functional so that setbacks

would be minimal. Domain requirements included the system's inputs, outputs, processes,

performance, and controls. Functional requirements are the components the system must contain

to function, such as the AI and database. Non-functional requirements do not relate to

functionality; they only improve functionality in reliability and efficiency. These include the

implementation of user accounts and image generation.

25

4. Computing-Based Solution/System Design,

Implementation, and Testing

4.1 Introduction

The design process of this project was complicated as it required various development

tools to work in harmony for the final product to function. User inventory and preferences were

to be stored in and retrieved from a database, formatted adequately by a program, and sent to an

AI API to return a desired result. The result can be saved into the database and retrieved for

future use. We do this behind a user-friendly interface, where the user can access all of KAMI’s

functions.

4.2 Programming Environment

4.2.1 Visual Studio

Visual Studio Code is an easy-to-use, well-organized code editor. Its design allows the

user to have easy access to the entire directory. We thought this would be an excellent IDE

(integrated development environment) for this project. It can work efficiently with Andriod

Studio to create a working application. However, due to our decision to no longer develop an

application, we decided to find another software to develop our project.

4.2.2 PyCharm

PyCharm is a popular Python IDE. The team member who worked on the system code

preferred it over Visual Studio, so we used it as the IDE instead. PyCharm's integrated terminal

streamlines downloading dependencies, which are essential for the system’s functionality. The

AI and database APIs were connected through Python code, allowing convenient prototype

testing prototype within the IDE.

26

Users can interact with the system through a terminal menu, where their selections

influence the generated string. The generated string is a combination of preprogrammed phrases

and user input. It dynamically incorporates details like dietary restrictions, ingredient

preferences, and the cuisine of choice. This personalized string is then sent to the AI API,

starting the recipe generation process.

4.2.3 XAMPP MySQL

The inventory and user information database was set up on XAMPP, a popular web

development tool. XAMPP provided many development tools, including MySQL, the database

application used in the backend of our project. XAMPP allowed us to simulate a server

environment on our local machines so we could quickly make SQL queries locally in the early

stages of the project. Having a local server makes it very useful for prototyping and debugging

before deploying the database to a live server. XAMPP uses phpMyAdmin, a web-based

interface for MySQL database management. We used SQL queries on phpMyAdmin to create

tables, populate them with sample data, and set relationships between them. We integrated

MySQL into Python by importing the “MySQL.connector” library, allowing the Python program

to send SQL queries in a string format to the database. These program queries function

identically to queries on phpMyAdmin.

4.3 Tools and APIs

4.3.1 OpenAI GPT-4 API

The core of the KAMI lies in the capabilities of OpenAI's GPT-4. “GPT-4 is OpenAI’s

most advanced system, producing safer and more useful responses” (OpenAI). It is an improved

version of older versions like GPT-3.5. By importing the “openai” library, the system can send

27

queries and receive responses from GPT-4 through the AI API. To be operational, the API

requires a key generated on the OpenAI website, and the account associated with that key must

have an active subscription. In the code, we can prompt the API with how GPT-4 is required to

act, along with a level of randomness determined by a factor called “temperature.” The

temperature ranges from 0 to 2, with 0 being completely unrandom (giving the same output for

the same initial prompt) and 2 being complete random gibberish.

4.3.2 OpenAI’s DALL-E 3 API

The OpenAI subscription also includes DALL-E 3, an AI image generator. It uses the

same “openai” library, and we can send a text prompt to the API in Python code. The API returns

an image based on the prompt, which we determined to add as a feature for the project.

Figure 6

AI-Generated Images during Testing

4.3.3 HTML, CSS, and JavaScript

HyperText Markup Language (HTML) is the standard markup language for webpages. It

defines the structure and design of web pages. HTML often implements Cascading Style Sheets

(CSS) and JavaScript, creating 95.5% of all websites on the World Wide Web (Usage Statistics

of HTML for Websites, n.d.).

28

CSS allows websites to achieve more complicated designs by laying out and structuring

HTML code. It allows the grouping of webpage contents, keeping the design neat and formatted.

It enables the webpage to adapt its width and height as the window changes. It also allows for

interactive buttons that change color when hovered upon, drop-down menus, and other valuable

functions.

JavaScript is responsible for the behavior of the website, allowing it to react to specific

user actions. It enables the website to accept input when users click a button or tick a checkbox.

JavaScript often incorporates third-party libraries to perform its required tasks. With the help of

ChatGPT and extensive online documentation, we generated the necessary HTML, CSS, and

JavaScript code for a functional website.

Figure 7

Screenshot of the Prototype Website

29

4.3.4 Django

Django is a web application framework that uses Python as its basis. We used this to

expand our API application to a broader audience. Django allows us to host our program on a

web server accessible through a browser. We specifically chose this framework due to a focus on

easy Python implementation, the ability to implement an SQL database, and hosting the HTML

for the website.

4.3.5 Dependency Downloads

We installed several other libraries for the project to work. They provided the required

functions or allowed the APIs to connect with the code. We ran the following “import”

statements in our Python code:

● import openai - OpenAI API library

● import PIL - Pillow, an image displaying library (only used for the prototype)

● import mysql.connector - database API library

● import requests - HTTP library

4.4 Testing Techniques

This development process adhered to a test-driven development (TDD) approach, where

each newly implemented feature underwent immediate testing to verify the correct output. This

testing technique was consistently applied, encompassing functionalities like layouts, button

clicks, scanners, and database queries and extending to HTML testing and API calls.

For every introduced feature, the initial focus was on validation testing. This step was

critical to ensure that each segment functioned correctly and that modifications to one feature did

not adversely impact others. Following successful validation, the testing process delved into

30

defect testing. This phase aimed to confirm that results are accurate and guarantee that any

application misuse would not lead to issues and bugs.

As an example, during the implementation of the database feature, thorough testing was

conducted to ensure the proper functioning of retrieving and inputting data from the database.

Beyond this, the testing procedure extended to checking other tables in the database to confirm

that these queries did not inadvertently affect unrelated tables. This comprehensive testing

strategy, encompassing HTML, API calls, and various functionalities, played a pivotal role in

ensuring the robustness and reliability of the application throughout its development.

4.5 Computing-Based Solution/System Design

The project's development process underwent multiple iterations to refine the

application's design, focusing on determining the feasibility and outlining the future user

interface (UI). Throughout these iterations, we embraced an object-oriented approach to craft

various data objects essential for implementing the required features. Ensuring a well-organized

structure in both organization and implementation, we recognized the necessity of a robust

design architecture.

Django, the web framework of choice, emphasizes a Model View Template (MVT)

structure. This determines the architectural pattern of the project. Django's MVT structure

divides the application into three key components: the Model, which represents the data and

database interactions; the View, which is responsible for handling user interface logic and

rendering; and the Template, which defines the structure and presentation of the UI.

31

Figure 8

Diagram of a Web Framework Architecture (Django MVT, n.d.)

Incorporating Django's MVT architecture ensures a clean and modular design, promoting

scalability, maintainability, and readability. The Model component encapsulates the business

logic and database interactions, facilitating effective data management. The View handles user

interface logic, ensuring seamless interaction between the user and the application, while the

Templates define the visual presentation of the UI.

The decision to adopt the MVT architecture aligns with best practices for Django

projects, providing a solid foundation for development and enhancing the overall structure and

organization of the project. This approach promotes code reusability, ease of maintenance, and a

clear separation of concerns, contributing to a more efficient and sustainable project development

lifecycle.

32

Figure 9

Diagram of the Database Architecture (Overview of MySQL Storage Engine Architecture, n.d.)

The MySQL pluggable storage engine architecture offers a versatile solution for a

database by allowing the user to access their desired data storage without the need for extra

coding at the application level. The system uses a consistent and easy-to-use application model,

and the API provides a standardized interface, isolating users from the need to manage the

backend of the database.

As illustrated in Figure 9, the MySQL architecture contains pluggable storage engines.

This architecture introduces a standard set of management and support services to all storage

engines, enabling efficient reading and writing of data at the physical server level. The design is

beneficial for tailored application requirements, such as data warehousing, transaction

processing, or high availability scenarios, without necessitating significant coding changes

(Overview of MySQL Storage Engine Architecture, n.d.). Through connector APIs and service

33

layers, users can interact with the MySQL database, maintaining flexibility for potential changes

in storage engines without compromising the consistency of the user interface.

4.6 Implementation and Testing

We initially chose Microsoft Azure for the database but later changed to XAMPP

MySQL. MySQL was more suitable for the project because Azure was too heavily

commercialized. Other than the database, it also required the management of the server and

database subscriptions. MySQL provided all the necessary functions for this project while

remaining simple to set up and manage. We can quickly transfer databases between team

members who use MySQL. We used simple unit testing in the calls between the code and

database to ensure the system receives the expected output. For example, if our database contains

a user with the username “JamesBond007”, the code should only have access to the ingredients

and preferences associated with that username.

Python was the programming language of choice because it contained all the needed

libraries for this project. The initial choice of a platform to run the project’s code was Google

Colab. However, it presented many challenges in handling and integrating the needed APIs. It

was especially slow and unresponsive to the OpenAI API. We tested both Visual Studio and

PyCharm as alternatives, and PyCharm ended up being the IDE of the prototype. PyCharm's

ability to easily download dependencies was why we chose it over Visual Studio.

The selection of a language model played a crucial role in the development process.

Initially employing GPT-3.5 Turbo, issues arose as the model proved slower than desired. We

decided to upgrade to GPT-4, which offered enhanced speed and improved accuracy in

generating recipes. However, a challenge arose when the model generated the same output

repeatedly when receiving the same prompt, compromising the randomness we expected an AI to

34

have. Further research led to the discovery of GPT-4’s built-in function, “temperature,” which

determines randomness in the AI’s output. We could set it between 0 and 2 in the Python code. 0,

the default setting, meant that the AI would have no randomness. 2 was complete randomness,

resulting in the AI returning gibberish in our tests. After several query tests, we adjusted this

parameter to 1, a balance between the two. Adjusting this parameter proved key to injecting

variety into the model's outputs, ensuring our goal of generating unique and new recipes.

We decided to extend the project’s scope beyond text-based AI generation to image

generation. We chose OpenAI’s DALL-E as the subscription and code already included it and its

libraries. We initially started using DALL-E 2, an older image generation model, which is the

cheaper option. Limitations in image quality and aesthetics were quickly apparent, particularly

with the smaller size of images. We upgraded to DALL-E 3, the latest version of the DALL-E

series. This shift significantly enhanced the visual appeal of the generated images, aligning them

more closely with the project goals.

4.7 Conclusion

This project used many advanced tools to make a working website. We used PyCharm to

write the code as it could easily integrate all the required dependencies. We used advanced

architectures like Django’s project architecture and MySQL's pluggable storage engine

architecture. We chose Django to build the website, ensuring smooth communication between

the AI API and databases. XAMPP allowed us to set up local MySQL servers on our computers,

which helped test the prototype before the final product. ChatGPT-4 and DALL-E 3 were the

main components implemented into the system to allow KAMI to generate recipes and give them

a visual appeal. We implemented our research and tested KAMI to ensure its functionality and

reliability.

35

5. Conclusion

5.1 Summary

This project focused on enhancing users' experience in the kitchen, whether for home

cooks or professional chefs. Home cooks may have limited ingredients and may want ideas for

using them. On the contrary, more experienced chefs may have too many ingredients and want to

try exploring new dishes. This project is an AI-powered kitchen assistant, which we named

KAMI. Through implementing AI, KAMI can assist the user by generating recipes with all the

available ingredients while keeping dietary needs in mind. To further convenience the user, they

can save their ingredient inventory and preferences to their account. Generating recipes based on

only the available ingredients can also reduce food waste and boost productivity by providing

practical solutions that cater to the user’s individual needs. We have high hopes for the future

development of KAMI, as it has the potential to be a beneficial product in the market.

5.2 Reflections

A semester-long project was no small feat, and it displayed the need for proper planning

and adaptability to setbacks. Using the Waterfall model as the development methodology, each

team member could work on a specific project component. This methodology allowed each

member to specialize in a field. One could focus on the AI API, another on the database, and

another on the application interface. This division of work allowed for specialization and

efficiency within the team. The use case and entity relationship diagrams, essential components

of the project, were developed collaboratively, reflecting the collective effort in creating a clear

and comprehensive system design.

This project also proved the importance of a robust research phase. It forced us to adapt

early in the timeline, even before the project's development started. For example, when faced

36

with the realization that building a superior recipe-generating AI might be impractical compared

to existing APIs like ChefGPT and DishGen, we quickly shifted towards a kitchen that integrates

these APIs instead. This change prevented us from wasting valuable development time and

allowed us to avoid unforeseen issues.

Proper collaboration was required to develop this team project. We used Discord for

online communication and Google Drive for file sharing. These popular platforms ensured

efficient communication and access to the most updated files between team members. Using

Discord also allowed us to meet virtually and work together outside of class hours.

In conclusion, our teamwork was instrumental in successfully navigating the

complexities of development, from strategic decision-making to the practical implementation of

each project component. The synergy of individual contributions within the framework of a

well-organized team played a pivotal role in achieving our goal of creating KAMI.

5.3 Future Development

Based on the insights gained from the capstone project, a strategic future development

action plan emerges to enhance the KAMI further. Introducing a budgeting system that factors in

ingredient prices would empower users to make cost-effective culinary choices. Implementing

inventory management features, mainly focusing on ingredient expiration dates, would add a

valuable layer of practicality, reducing food waste and ensuring user safety.

Expanding the platform to facilitate recipe sharing among users cultivates a sense of

community and encourages culinary creativity. Moreover, tailoring KAMI's functionalities to

accommodate business accounts for restaurants and food stalls opens up new possibilities for

commercial applications. To support inexperienced cooks, integrating video tutorials and helpful

links would provide visual guidance and supplementary resources. This approach ensures

37

continuous improvement and user satisfaction, positioning the kitchen assistant AI website as an

evolving and indispensable tool in the culinary landscape.

The same framework can be replicated to create similar AI-based applications. The utility

of the web application can be changed without changing the core system architecture. Our team

can modify KAMI to fit the needs for potential future clients, outside of AI recipe generation.

38

References

AI Won't Replace Humans — But Humans With AI Will Replace Humans Without AI. (2023,

August 4). Harvard Business Review. Retrieved December 1, 2023, from

https://hbr.org/2023/08/ai-wont-replace-humans-but-humans-with-ai-will-replace-humans

-without-ai

Boyanton, M. U.-L. (2023, March 3). Is ChatGPT Coming for Your Kitchen? Eater. Retrieved

December 1, 2023, from

https://www.eater.com/23620766/chatgpt-ai-recipes-versus-chefs-tiktok-who-made-it-bett

er

DALL·E 3. (n.d.). OpenAI. Retrieved December 1, 2023, from https://openai.com/dall-e-3

Davis, M. E., & Phillips, J. A. (2007). Learning PHP & MySQL: Step-by-Step Guide to Creating

Database-Driven Web Sites. O'Reilly Media.

Difference between MVC and MVT design patterns. (2022, September 14). GeeksforGeeks.

Retrieved December 1, 2023, from

https://www.geeksforgeeks.org/difference-between-mvc-and-mvt-design-patterns/

Django documentation. (n.d.). Django. Retrieved December 1, 2023, from

https://docs.djangoproject.com/en/4.2/

Django MVT. (n.d.). Javatpoint. Retrieved December 1, 2023, from

https://www.javatpoint.com/django-mvt

Django Project MVT Structure. (2021, August 16). GeeksforGeeks. Retrieved December 1,

2023, from https://www.geeksforgeeks.org/django-project-mvt-structure/

Food Waste FAQs. (n.d.). USDA. Retrieved December 1, 2023, from

https://www.usda.gov/foodwaste/faqs

39

GPT-4 is OpenAI's most advanced system, producing safer and more useful responses. (2023,

March 13). OpenAI. Retrieved December 1, 2023, from https://openai.com/gpt-4

How to Use ChatGPT API in Python? (2023, April 8). GeeksforGeeks. Retrieved December 1,

2023, from https://www.geeksforgeeks.org/how-to-use-chatgpt-api-in-python/

Introduction - OpenAI API. (n.d.). Platform OpenAI. Retrieved December 1, 2023, from

https://platform.openai.com/docs/introduction

Kumar, B. (2023, October 11). Outputting Python To HTML In Django. Python Guides.

Retrieved December 3, 2023, from

https://pythonguides.com/outputting-python-to-html-django/

Marcus, G., & Davis, E. (2020). Rebooting AI: Building Artificial Intelligence We Can Trust.

Knopf Doubleday Publishing Group.

Mettler, A. (2023, May 2). Food waste in restaurants: What we know — Fourth. Fourth.

Retrieved December 1, 2023, from

https://www.fourth.com/article/how-much-food-restaurants-waste

Overview of MySQL Storage Engine Architecture. (n.d.). MySQL. Retrieved December 1, 2023,

from https://dev.mysql.com/doc/refman/8.0/en/pluggable-storage-overview.html

Suehring, S. (2002). MySQL Bible. Wiley.

Usage statistics of HTML for websites. (n.d.). W3Techs. Retrieved December 1, 2023, from

https://w3techs.com/technologies/details/ml-html_any

Beginner’s Guide to Agile Project Management. (2022, March 18). Adobe Experience Cloud.

Retrieved December 2, 2023, from https://business.adobe.com/blog/basics/agile

Wicks, L. (2022, December 7). Why Cooking—No Matter the Recipe—Is Better for Your Health.

EatingWell. Retrieved December 1, 2023, from

40

https://www.eatingwell.com/article/291719/why-cooking-no-matter-the-recipe-is-better-f

or-your-health/

Zeballos, E. (2020, April 6). More Americans Spend More Time in Food-Related Activities Than

a Decade Ago. USDA ERS. Retrieved December 1, 2023, from

https://www.ers.usda.gov/amber-waves/2020/april/more-americans-spend-more-time-in-f

ood-related-activities-than-a-decade-ago/

41

Acronyms

AI - Artificial Intelligence

API - Application Programming Interface

ChatGPT - Chat Generative Pre-Trained Transformer

CSS - Cascading Style Sheets

HTML - HyperText Markup Language

KAMI - Kitchen Assistant and Meal Innovator

MVT - Model View Template

MySQL - My Structured Query Language

TDD - Test-Driven Development

UI - User Interface

USDA - U.S. Department of Agriculture

XAMPP - Cross-Platform, Apache, MySQL, PHP, and Perl

42

List of Figures

Gantt Chart of the Project

Use Case Diagram of the System

43

Use Case Description for Logging into or Creating a User Account

Early ER Diagram Prototype of the Database

44

Final 3NF ER Diagram of the Database

AI-Generated Images during Testing

45

Screenshot of the Prototype Website

Diagram of a Web Framework Architecture (Django MVT, n.d.)

46

Diagram of the Database Architecture (Overview of MySQL Storage Engine Architecture, n.d.)

